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Abstract 

Introduction: Indoor rowing is an increasingly popular mode of exercise that provides a 

total-body workout. In a proper rowing motion, muscles in the leg, back, and arm are 

utilized sequentially (Secher, 1993). These different muscle groups, which vary in terms 

of muscle fiber composition, all consume oxygen during rowing exercise. However, it is 

unknown how changes in muscle oxygenation during an acute bout of rowing may differ 

between these primary working muscles. Purpose: The purpose of this study was to 

assess the deoxygenation in exercising muscles based on their oxidative properties and 

to further the research into new near infrared spectroscopy (NIRS) technology. 

Methods: Male and female college-age subjects were recruited for this study. NIRS 

devices were placed on the vastus lateralis, biceps brachii, and erector spinae muscles 

to measure oxygen saturation during rowing exercise. Subjects rowed for two minutes 

each at three different relative (i.e., based on percent of maximal power output) exercise 

intensities, in a randomized order. Muscle oxygen saturation (SmO2) and total 

hemoglobin content (THb) were continuously monitored during each stage, as well as in 

the rest periods between each stage. Results: Data indicate strikingly similar trends in 

muscle oxygen consumption in men and women during rowing. Additionally, SmO2 in 

the vastus lateralis decreased to the greatest degree out of the three muscle groups, 

regardless of intensity. The deoxygenation of the biceps and erector muscles, however, 

were not significantly different from each other. THb, like SmO2, increased from rest to 

exercise, but was not significantly different between the exercise intensities. The 

difference between male and female THb across all time periods was significant, as 

males exhibited a higher THb than females. Discussion: Many results of the study 
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proved to be insignificant, most likely due to a multitude of variables, including the small 

sample size, the untrained status of the subjects, and the low reliability of current NIRS 

devices at high intensity exercise. More research should be performed to further 

understand the oxidative properties of various muscles groups during rowing exercise 

as well as advance the reliability of NIRS technology in an athletic setting. 
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Introduction 

Indoor rowing is an increasingly popular workout that has the potential to be a 

more aerobically challenging exercise regime than treadmill or cycling workouts 

(Hagerman, 1984). One of the primary reasons for the increased oxygen demand during 

rowing is the utilization of a myriad of muscle groups (Secher, 1993). In a proper rowing 

technique, muscles of the legs, back, and arms sequentially contract to create a 

powerful, fluid motion. Due to differences in fiber composition and size of the muscles 

used during this motion, oxygen consumption will vary across the muscle groups 

(Mannion, 1999). However, it is unknown how changes in muscle oxygenation during an 

acute bout of rowing may differ between these primary working muscles; further, 

whether or not men and women, who tend to have differences in both absolute muscle 

mass and muscle fiber composition, exhibit different rates and/or magnitude of muscle 

deoxygenation responses during rowing is not clear. 

Using near infrared spectroscopy (NIRS), oxygen saturation and hemoglobin 

concentration in various muscles can be monitored simultaneously. NIRS uses infrared 

light to travel through the muscle and back up to the detector on the monitor. Based on 

the amount of light scattered, how much light was absorbed by oxygen molecules can 

be calculated, and thus saturation of oxygen in the target tissue can be determined. The 

MOXY NIRS device (Foritori Design LLC, Hutchinson, MN) is a small, lightweight 

monitor that is placed directly on the skin to record changes in oxygen saturation and 

hemoglobin content. Its portability makes it ideal for athlete training programs and 

exercise research. By utilizing data on real-time O2 usage during workouts, trainers and 
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coaches can prescribe more accurate training intensity zones to maximize their athletes’ 

exercise potentials.  

Indoor rowing utilizes arm, leg, and back muscles - three muscles of particular 

importance to the movement are the vastus lateralis, biceps brachii, and middle erector 

spinae. The vastus lateralis is the most lateral muscle of the quadriceps group, and it 

allows for extension of the leg as well as the body to rise up from a squatting position. 

Due to its frequent use in quick, forceful contractions, the vastus lateralis has a large 

muscle belly and a blend of slow- and fast-twitch fibers. The biceps brachii is a two-

headed muscle that is primarily utilized for elbow flexion. It has a smaller fiber size than 

the vastus lateralis and has a higher concentration of type II fast-twitch fibers. The 

erector spinae muscles are a group of thin muscles that run along the spinal column. 

They work in tandem to maintain posture and bend the trunk forward. Because of the 

long contractions required to stand and hold the body upright, the erector spinae 

muscles have the highest concentration of type I slow-twitch fibers in the entire skeletal 

muscular system. Due to the differences in oxidative capacity of these muscles, they 

likely will exhibit unique oxygenation curves, despite all being heavily utilized in the 

rowing movement, in untrained subjects.  

Although much research has been published lately assessing the validity and 

reliability of NIRS devices, few have used NIRS during rowing exercise. Additionally, 

limited studies have examined the oxygenation of back muscles during exercise using 

NIRS technology. As such, this project aims to quantify oxygenation changes in different 

muscle groups throughout rowing exercise in healthy men and women. This study will 
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further advance the research behind NIRS as an assessment tool, and shed more light 

on the oxidative properties of various muscle groups during rowing exercise.  

The main focus of this research is to quantify changes in oxygen saturation 

during rowing exercise across various muscle groups and intensities. We hypothesize 

that the degree of deoxygenation is linked to the muscles’ fiber sizes and compositions; 

therefore, the biceps brachii will experience the greatest decline, the vastus lateralis will 

have an intermediate decline, and the erector spinae will have the least degree of 

deoxygenation. We also hypothesize that, regardless of order, the high-intensity interval 

will present with the greatest degree of deoxygenation in all three muscles. 
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Review of Literature 

Introduction 

By utilizing near infrared spectroscopy, muscle deoxygenation trends can be 

observed during exercise. Modern-day NIRS oximeters are highly reliable during 

exercise (Crum et al., 2017) but have not been used often in an indoor rowing setting. 

Because rowing requires activation of almost every muscle group in the body (Secher, 

1993), muscle deoxygenation occurs in a myriad of muscle groups during rowing 

exercise and thus should be investigated to find trends and differences in muscles with 

varying oxidative characteristics.  

This study included multiple foci of interest, such as a practical application of 

near infrared spectroscopy, indoor rowing as an exercise research modality, and the 

deoxygenation of various skeletal muscle groups during exercise. Because of these 

wide-spanning topics, this review of literature is split into three main sections: NIRS 

technology, biomechanical and physiological aspects of indoor rowing, and the 

anatomical characteristics of the studied muscle groups. Although much research has 

been published in these three respective categories, there is very limited literature that 

has previously tied these topics together. This review of literature aims to provide a 

background on the main variables of research and synthesize them in an investigative 

setting.  

 
NIRS technology 

Continuous wave near infrared spectroscopy (CW NIRS) is a relatively new 

method to monitor oxygen saturation in human subjects. Early on in the development of 

this technology, McCully & Hamaoka (2000) detailed the specific processes of muscle 
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oxygenation monitoring via NIRS. CW NIRS monitors use a continuous stream of 

infrared light between 700 and 900 nm that penetrates the tissue; in most instances, 

that specific tissue is skeletal muscle. Heme compounds found in hemoglobin and 

myoglobin reflect or scatter this stream of infrared light. Because oxygen molecules 

attach to heme to get carried through the blood, the amount of light absorbed by these 

compounds can determine how much oxygen is in a given tissue. Using the Beer-

Lambert Law, the amount of light scattered by the heme compounds is calculated to 

determine a percentage of oxygen saturated in that tissue.  

NIRS technology has been used to measure muscle oxygenation since the late 

1980’s (Ferrari et al., 2011). Since then, major improvements have been made in the 

cost and portability of NIRS-based oximeters (Grassi & Quaresima, 2016). Research 

using NIRS devices has focused on two main settings: exercise and clinical 

applications. It has been proven that NIRS technology can be used for a wide array of 

exercise training modalities (Neary, 2004), such as skiing, speed skating, cycling, 

running, and rowing. NIRS has also aided in clinical diagnostics. Jobsis (1977) utilized a 

very early NIRS system to monitor oxygenation in the cerebral circulatory pathways, 

assisting in patients’ diagnoses of a stroke. More recently, NIRS devices have 

monitored cardiac rehab patients with chronic heart failure during exercise (Mezzani et 

al., 2013).  

The main focus of research today regarding NIRS technology is the performance 

of NIRS-based oximeters during exercise. Grassi & Quaresima (2016) created a review 

detailing the extensive uses of NIRS oximeters during exercise as well as the myriad of 

physiological variables these devices can provide. These variables include: regional 
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blood flow, O2 consumption, and O2  extraction at the skeletal muscular level. By utilizing 

these variables, cardiac output (Q) can then be determined based on NIRS technology 

alone. In addition, NIRS oximeters also have been shown to align with various 

physiological thresholds, such as the ventilatory threshold (Bhambhani et al., 1997) and 

the onset of blood lactate accumulation (Grassi et al., 1999). It is also well known that 

regional blood flow to the skin increases during exercise due to the increase in body 

core temperature (Kenney & Johnson, 1992). When NIRS technology started to become 

more widely available in the early 21st century, researchers tested the effects of the 

increase of skin blood flow on NIRS oxygenation measures. Buono et al. (2005) state 

that any increase in skin blood flow, due to heating or exercise, will negatively affect 

NIRS recordings due to the large increase in hemoglobin. However, Tew et al. (2010) 

argue that NIRS oxygenation values only lose reliability due to increased skin blood flow 

during moderate or high intensity exercise.  

Although previous literature has debated a possible limitation to determining O2 

extraction via NIRS, there is no doubt that a subcutaneous adipose tissue layer is 

indeed a limitation of current NIRS technology. There is, however, an ongoing debate in 

research whether a concrete threshold on the amount of adipose tissue exists or not. 

Hamaoka et al. (2011) argue that an adipose tissue thickness (ATT) of 5mm will reduce 

the signal intensity, but is not significantly reduced until the layer of ATT is over 15mm. 

Niemeijer et al. (2017) expand on this limitation, stating that NIRS signals are altered by 

an ATT layer of as little as 1mm. Additionally, due to the highly oxygenated blood found 

in adipose cells, they conclude that a higher ATT will cause NIRS signals to inaccurately 

report a higher muscle oxygenation value. Some correction algorithms have been 
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created for in-laboratory NIRS monitors. Grieger et al. (2013) recommended a Monte 

Carlo-based correction model that allows for a greater spectral view when subjects 

present a large ATT (~15 mm). Although simulations like the Monte Carlo model exist in 

some settings, they are not widely incorporated in commercial NIRS devices. Therefore, 

current research in NIRS oximeters is limited to a lean, healthy subject population 

(Ferrari et al., 2011).  

The NIRS device used in this study is the MOXY Muscle Oxygen Monitor (Foritori 

Design LLC, Hutchinson, MN). Due to its small size (61x44x21 mm) and lightweight 

design (42g), MOXY oximeters are ideal for athlete training regimens and exercise 

research, since the devices will not impede on any forceful movements. Its small size 

also indicates that these devices measure local muscle oxygenation characteristics, 

instead of whole-body O2 changes. Crum et al. (2017) determined that, from rest to 

moderate intensity exercise, MOXY sensors show a high reliability of muscle 

oxygenation values. At high intensity exercise, however, the sensors become much less 

reliable. This is a common pattern among all NIRS devices (Thiel et al., 2011), and can 

be attributed to the increase in muscle contraction causing an impairment in muscle 

perfusion, leading to a more variable oxygenation recording. When compared to the 

PortaMon, a NIRS oximeter similar in size and cost, the MOXY sensor showed a 

greater change in muscle oxygenation values from rest to maximal exercise (McManus 

et al., 2018). This literature reveals that, at exercise intensities less than maximal, the 

MOXY muscle oxygen monitor is both a valid and reliable device to measure muscle 

oxygenation in a training or research setting.  
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Indoor Rowing 

Although rowing has been of interest in an exercise science research setting for 

over 150 years (Warmenhoven et al., 2018), it has never been as popular as other 

aerobic exercise modalities, such as running or cycling. Since 2016, 38,100 results 

appear when searching for “treadmill exercise” publications; 46,000 appear for “cycling 

exercise”; and 20,000 results appear for “rowing exercise” publications. However, when 

studied properly, rowing can provide excellent data on a myriad of biomechanical and 

physiological variables.  

When compared to treadmill running or indoor cycling, indoor rowing provides a 

much more holistic exercise modality. This is because rowing requires activity from 

almost every muscle group in the body (Secher, 1993). An early study found high 

muscle activity in major muscles of the arms, legs, and back (Ishiko, 1967). A proper 

rowing motion utilizes these muscles in a sequential order. According to Concept2 

(“Technique Videos”), the leading manufacturer of rowing ergometers and the device 

used in this study, the motion can be broken down into four segments: the ‘catch’, the 

‘drive’, the ‘finish’, and the ‘recovery’. The catch phase is the beginning of the motion. It 

serves as a baseline position to return to after each stroke. During this phase, the arms 

are extended, the back is slightly bent, and the handlebar is in its neutral position by the 

flywheel. The drive is the second, and arguably most important, technique in the motion. 

The drive involves movement of the legs, arms, and back to pull the handlebar away 

from the flywheel and towards the chest. The finish phase is a static position to hold the 

body in an isometric contraction after the drive concludes. The final phase is the 

recovery, where the body relaxes in the opposite order of the drive and returns to the 
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catch phase to begin the next stroke. Although there is much debate in the time spent in 

the drive versus the recovery phase, Umar et al. (2019) found in elite rowers a drive to 

recovery ratio of 1:1 in off-water rowing.  

The drive can further be broken down into three distinct movements. First, the 

legs press to push the body away from the starting point. Then, the back swings to 

extend the core. Finally, the drive ends with the flexion of the arms, bringing the 

handlebar towards the body. The drive phase has been the most researched phase 

within the rowing motion. Many biomechanical studies have compared and contrasted 

ergometer motions to on-water rowing forms. Although ergometers in many ways 

accurately simulate on-water rowing, Lamb (1989) found a difference in arm kinematics 

between the two forms. Bazzucchi et al. (2013) analyzed electromyographic data of 

eight various muscles to determine that muscle activation is slightly lower in ergometric 

rowing compared to on-water rowing. Another point of interest has been the differences 

in kinematics between elite rowers and non-rowers. Non-rowers vary significantly in 

body posture and stroke technique when compared to elite rowers (Cerne, 2013). Since 

all subjects of this current study were classified as non-rowers, it was pertinent to advise 

them on proper rowing techniques based on the Concept2 guidelines. 

As with other modes of exercise, there are a plethora of physiological responses 

to ergometric rowing. The metabolic cost of rowing is split, with 70% of the energy 

contribution coming from aerobic pathways and 30% coming from anaerobic pathways 

(Hagerman et al., 1978). This requires the rower to possess both anaerobic power as 

well as cardiorespiratory endurance. Ventilation (VE) increases during rowing (Das et 

al., 2019) and exhibits a non-linear increase after a threshold, similar to other 
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cardiorespiratory workouts (Bunc & Leso, 1992). It has also been observed that the 

increase in ventilation is associated with a higher breathing frequency and a lower tidal 

volume (Szal & Schoene 1989). Maximal oxygen consumption (VO2max) is higher in 

indoor rowing than treadmill running (Yoshiga & Higuchi, 2003) as well as indoor cycling 

(Lindenthaler et al., 2018). On average, VO2max is typically achieved within two minutes 

of high-intensity rowing (Hagerman, 1984). It is due to this literature that the workout 

intervals implemented in this study last two minutes each, as most individuals cannot 

perform at their capacity for much longer after VO2max is achieved.  

The most relevant physiological variable to this study is skeletal muscle 

oxygenation (SmO2). Utilizing early NIRS technology, Belardinelli et al. (1995) found 

that SmO2 in the vastus lateralis decreases during an incremental cycling exercise. As 

the subjects neared VO2max, however, the decrease of SmO2 slows, resulting in a 

plateau when VO2max was achieved. Immediately following the stoppage of exercise is a 

phenomenon known as “oxygen debt.” Once exercise stops, the active skeletal muscle 

continues to demand a great amount of blood flow, causing a sharp increase in oxygen 

saturation in the beginning stages of recovery (Knuttgen, 1970). Oxygen debt has been 

observed in recovery from ergometer rowing as well (Chance et al., 1992). Using NIRS, 

Zhang et al. (2010) compared the changes of muscle oxygenation in the vastus lateralis 

and biceps brachii during an incremental rowing exercise. They found that both the 

“breaking point”, the point in which muscle oxygenation severely drops at the beginning 

of an exercise, and the “leveling-off point”, the point in which oxygenation plateaus at 

the end of the interval, occur earlier in the biceps brachii than in the vastus lateralis. 

This allows us to infer that various muscle groups have differing oxidative capacities, 
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and these capacities can be determined through the observation of muscle oxygenation 

during exercise.  

 
Fiber Characteristics of the Vastus Lateralis, Biceps Brachii, and Erector Spinae 

Scott et al. (2001) outlined seven different types of human skeletal muscle, all 

placed on a spectrum from slowest-twitch to fastest-twitch. Of these seven types, three 

are most commonly seen: type I, type IIa, and type IIb (Simoneau & Bouchard, 1989). 

Type I fibers are considered slow-twitch yet have a bountiful network of capillary beds 

providing oxygen; it is because of this high oxygen content that type I fibers are linked to 

endurance exercises. Coyle et al. (1992) found a high percentage of type I fibers in the 

vastus lateralis of trained cyclists. Type II fibers, both IIa and IIb, are less oxidative than 

type I but are faster-twitch, allowing for more power to be generated. Type II fibers are 

more commonly found in athletes utilizing short, quick movements, such as power lifters 

(Fry et al., 2003). For this study, the fiber type characteristics of the vastus lateralis, 

biceps brachii, and erector spinae should be taken into consideration. Each muscle has 

a unique size and fiber composition, thus allowing for differing oxidative capacities.  

The erector spinae muscles are a group of skeletal muscles that run down both 

sides of the spine, mainly functioning to keep the upper body in an upright position. 

These muscles also assist in forward bending and lifting (Bogduk, 2005), activating 

them during the drive and catch of the row. Because of the long, low-force contractions 

required to maintain posture, type I slow-twitch fibers are the main paraspinal muscle 

fiber. On average, type I fibers comprise 62.0% of the erector spinae in men and 67.8% 

in women (Mannion, 1999). The predominance of type I fibers make the erector spinae 

unique to most other muscle groups.  
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Contrary to the erector spinae muscles, the biceps brachii have a much lower 

concentration of type I fibers. Klein et al. (2003) found that type II fibers make up about 

60% of the biceps brachii in both young and elderly males. This fiber concentration 

allows for higher force generation yet faster fatigue (Gerdle et al., 1990). As the muscles 

mainly responsible for elbow flexion (Nygaard et al., 1983), the biceps brachii are 

essential to the rowing stroke.  

The vastus lateralis muscle, the main driving force of the rowing stroke, has a 

unique blend of fast- and slow- twitch fibers. Of the three main fiber types, Staron et al. 

(2000) discovered that approximately 40% of the muscle is made up of type I fibers, 

30% is type IIa, and 20% is type IIb in both male and female subjects. A more 

homogenous mix of fiber types grants the vastus lateralis a higher force production than 

erector spinae muscles as well as less fatigability than the biceps brachii. Along with 

this blend of fibers is the overall size of the vastus lateralis. The vastus lateralis has a 

considerably larger cross-sectional area than the biceps brachii (Miller et al., 1993) as 

well as the group of erector spinae muscles (Delp et al., 2001). This larger size will also 

lead to a greater force production (Tonson et al., 2008).  

When the vastus lateralis, biceps brachii, and erector spinae muscles are 

ordered by type I fiber concentration, the erector spinae would be highest, the vastus 

lateralis would be in the middle, and the biceps brachii would be the lowest. Ordered by 

type II fiber concentration, these muscles would be in the exact opposite order. This 

means that the erector spinae should have the highest oxidative capacity and should 

fatigue the least during exercise. In contrast, the biceps brachii should fatigue the 

quickest, due to its higher concentration of type II fibers. Amann et al. (2006) 
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established a connection between muscle fatigue and oxygen saturation; therefore, the 

rate of deoxygenation should coincide with the fatigability of the observed muscle 

groups. 

Summary 

This review of literature aimed to provide a history of research on the various 

topics pertinent to this study. It is clear that there is a link between the use of NIRS 

technology, indoor rowing exercise, and the oxidative properties of muscles. However, 

we have not seen an all-encompassing synthesis of these topics. Studies have linked a 

few of these themes that create a prominent background for this current investigation. 

By observing the deoxygenation trends during rowing using NIRS devices, Zhang et al. 

(2010) provided the most relevant data for this investigation, but did not study the 

erector spinae muscles. Chance et al. (1992) also observed oxygenation trends during 

rowing, but limited their scope to the quadriceps muscle using outdated NIRS 

technology. A widespread viewpoint of current literature was necessary to gather 

information across multiple scientific topics, with the aim to bring them into one cohesive 

research project. 
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Methods 

Subjects 

All study protocols were approved by the Appalachian State University 

Institutional Review Board (IRB# 19-0289). Twelve healthy subjects (6 women) of 

varying fitness levels participated in this study. All subjects were between the ages of 18 

and 35 and had an adipose tissue thickness of less than 13 mm at the vastus lateralis, 

biceps brachii, and middle erector spinae, as measured via ultrasound (GE Vivid 7, 

Chicago, IL). Subjects were free from cardiovascular, metabolic, or renal disease as 

well as suggestive signs and/or symptoms of disease. 

Experimental Design 

    Following screening and consent, subjects came to the lab for a single visit. To 

assess the subject’s level of physical fitness, the International Physical Activity 

Questionnaire (IPAQ) (Booth, 2000) was administered at the beginning of the visit. After 

completing the IPAQ, anthropometry was assessed using a weight scale and 

stadiometer, and adipose tissue thickness (ATT) was measured via ultrasound at the 

three target sites. According to the literature, an ATT layer of 13 mm or more will 

significantly affect the muscle oxygenation measures. Therefore, any subject with 13 

mm or more of ATT at any of the three muscle sites was excluded from the study. The 

ultrasound sites of the vastus lateralis, biceps brachii, and erector spinae muscles were 

based off of guidelines provided by SENIAM (SENIAM, Enschede, NL). These sites 

were marked after measuring to ensure placement of the NIRS oximeters aligned with 

the ultrasound images.  
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For the full-body exercise stimulus, subjects rowed on an indoor rowing 

ergometer (Concept2 ©, Morrisville, VT). Due to the flywheel mechanism of a rowing 

ergometer, it is not possible to set a certain power output like a bike ergometer. The 

power, measured in watts, is based on the force at which the user rows. Therefore, this 

study used intervals based on a relative percentage of the subject’s individual maximum 

power output.  

Before the subject begins rowing, a familiarization period was administered to 

inform the subject on a proper rowing motion. After observing the researcher, the 

subject then practiced this motion, while being observed and receiving feedback from 

the investigator, for five minutes at a very low intensity. This practice also serves as a 

warm-up before the maximal power output test. After familiarizing themselves with the 

rowing motion, the subject then performed a maximal power output test, wherein they 

were instructed to row as forcefully as possible. Their power output was observed on 

the P5 monitor attached to the rower (Concept2 ©, Morrisville, VT). The power typically 

increased with each row for about 5 strokes. Then, once the power starts to decrease, 

the subject was informed to stop and the highest wattage was recorded as their max. 

This process typically took about 15 seconds.  

Percentages of the recorded max were then calculated. Since it is virtually 

impossible to row at a singular power value, ranges of power were calculated and the 

subject was instructed to row within that range for 2 minutes. The ranges are: 20-30% 

(light), 40-50% (moderate), and 60-70% (vigorous) of the subject’s maximal wattage.  

After a short rest period following the max test, the three NIRS devices were 

placed on the subject’s vastus lateralis (VL), biceps brachii (BB), and erector spinae 
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(ES) muscles. MOXY muscle oximeters were used in this study to measure muscle 

oxygenation and hemoglobin (Foritori Design LLC, Hutchinson, MN), and PeriPedal 

software was used to measure and record this data (Peripedal ©, 2018). All devices 

were placed on the right side of the body according to the sites imaged by the 

ultrasound earlier in the visit. To ensure a tight fit and continuous monitoring, the 

oximeters were attached with MOXY adhesives (Foritori Design LLC, Hutchinson, MN), 

as well as reusable cotton wraps.  

After placement of the oximeters, estimates of muscle oxygenation (SmO2) and 

total hemoglobin (THb) were continuously recorded. Resting values were recorded for 

five minutes. The order of the three exercise intervals was randomized. After the five 

minute rest period, the subject then rowed at each of the exercise intensities, with five 

minute rest periods separating each workload. After the final rest period, recording was 

stopped and the devices were removed. MOXY oximeters collect and report data every 

second. For this investigation, averages based off of these data were calculated. 

Data Analysis 

    Data are presented as means ± standard errors. Statistical analysis was 

performed using IBM SPSS Statistics 26 (Armonk, NY). To determine differences in the 

dependent variables between the various intensities and muscle groups, two-way 

repeated measures ANOVA tests were performed. Specifically, we examined SmO2 and 

THb of three muscle groups (VL, BB, ES) and four time points: the average of the first 

rest period and the average of the second minute of each interval: 20%, 40%, and 60%. 

Furthermore, because sex is known to affect total hemoglobin, sex was used as a 

between-subjects factor for analysis of changes in THb. When a significant interaction 
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was found, simple main effects were examined with adjustment for multiple 

comparisons. Significance was set at ɑ = 0.05.  
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Results 

Seven subjects consented to participate in this study and completed the exercise 

in its entirety. Four subjects were male and three were female. Using International 

Physical Activity Questionnaire (IPAQ) criteria, four subjects were classified as ‘highly 

physically active’ and three were classified as ‘moderately physically active’. Every 

participant was able to achieve the average wattage range required to row for each 

interval, except for one subject who did not reach within 60% of their final interval, but 

rowed for two minutes at a perceived high intensity regardless. Table 1 describes the 

body composition and characteristics of the seven subjects. 

 
Subject Sex Age 

(yr) 
Height 
(cm) 

Weight 
(kg) 

BMI 
(kg/m2) 

ATT_VL 
(mm) 

ATT_BB 
(mm) 

ATT_ES 
(mm) 

Max (W) 

001 M 21 184.1 71.4 21.1 5.2 3.6 4 473 

002 F 27 165 72.6 26.7 9.5 7.3 12.1 265 

003 F 22 162.9 62.1 23.4 7.3 5.8 2.8 144 

004 M 22 174.1 71.9 23.7 3.9 4.1 2.9 498 

005 M 21 195 72.9 19.2 4.4 2.4 4.1 475 

006 M 21 191 91.6 25.1 6.6 4.1 7.1 768 

007 F 22 175.2 56.2 18.3 6.4 2.7 5.9 200 

Mean 
 

22.3 178.2 71.2 22.5 6.2 4.3 5.6 403.3 

SD 
 

2.1 12.3 11.0 3.1 1.9 1.7 3.3 215.9 
Table 1. Subject body composition and characteristics. BMI: body mass index. ATT: adipose tissue thickness. VL: 
vastus lateralis. BB: biceps brachii. ES: erector spinae. Max: maximal power. 
 

The average age was 22.3 years (±2.1). The average height was 178.2 cm 

(±12.3) and the average weight was 71.2 kg (±11.0), leading to an average BMI of 22.5 

(±3.1) kg/m2. Five subjects were either in the underweight or normal weight range for 
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BMI, and two were in the bottom tier of the overweight range. None were classified as 

obese. The average adipose tissue thickness (ATT) measured via ultrasound at the 

three sites were 6.2 mm (±1.9) at the vastus lateralis, 4.3 mm (±1.7) at the biceps 

brachii, and 5.6 mm (±3.3) at the erector spinae; these ATT were not significantly 

different from each other (p=0.091).  

 

Figure 1. Minute average of muscle oxygenation of vastus lateralis (VL), biceps brachii (BB), and erector spinae (ES) 
during rowing exercise. An average was calculated each minute throughout both the rest periods and rowing 
intervals. The start and end of each interval and rest period is labeled. 
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Figure 2. Minute average of muscle oxygenation of vastus lateralis during rowing exercise. The solid blue line 
represents the average of all seven subjects; each grey line represents the minute average of an individual subject. 
 

Figure 3. Minute average of muscle oxygenation of biceps brachii during rowing exercise. The solid orange line 
represents the average of all seven subjects; each grey line represents the minute average of an individual subject. 
 



 26 

Figure 4. Minute average of muscle oxygenation of erector spinae during rowing exercise. The solid black line 
represents the average of all seven subjects; each grey line represents the minute average of an individual subject. 
 

Figure 1 shows a comparison of the oxygenation of the vastus lateralis (VL), 

biceps brachii (BB), and erector spinae (ES) muscle groups during the rowing exercise. 

NIRS data collection began after the subject performed a maximum power test and 

wattages were calculated for their three intervals. Resting values were recorded for five 

minutes after the subject’s oxygen characteristics returned to a baseline after the 

maximum power test. Then, the subject rowed at three varying intensities for two 

minutes each, with a five minute rest period in between each interval. Another five-

minute rest period was recorded after the final interval. Averages of muscle oxygen 

saturation (SmO2) were taken every minute in each of the three muscle groups.  

Figures 2, 3, and 4 outline the oxygenation of each muscle group during rowing 

exercise. Each sharp decline indicates a period of exercise, while the subsequent 

increases represent the beginning of the following rest period. There was a significant 

main effect of time (i.e., interval/intensity). Across all muscle groups, SmO2 in each 
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interval showed a significant difference from the rest period (rest vs. 20%: p=0.004, rest 

vs. 40%: p=0.001, rest vs. 60%: p<0.001). The SmO2 during the 20% interval was also 

significantly higher than the 60% interval (p=0.017) and, while not statistically different 

(p=0.051), tended to be higher than the 40% interval. There was no difference in SmO2 

during the 40% compared to the 60% interval (p=0.474).  

    The repeated measures ANOVA test was performed for three muscles (VL, BB, ES) 

and four major time points (average of first rest period, and minute 2 of 20%, 40%, and 

60% intervals). The test indicated a significant main effect of muscle group. Across each 

time period, the oxygenation of the VL was significantly less than both the BB (p=0.027) 

and the ES (p=0.050). The BB and the ES, however, were not significantly different from 

one another (p=0.176). When observing both time and muscle, the SmO2 of the VL was 

different at all four time points. The SmO2 of the BB was different from rest to each of 

the exercise intensities, but was not different from one exercise intensity to another. As 

with the BB, The ES SmO2 was different from rest to each of the exercise intensities, but 

was not different from one interval to another. Figure 5 shows the SmO2  of muscle 

groups at each of the four time periods.  
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Figure 5. Minute averages (± SE) of vastus lateralis (VL), biceps brachii (BB), and erector spinae (ES) muscle 
oxygenation during four major time periods. 
 

As for total hemoglobin (THb), there were fewer significant differences between 

intensities and muscle groups than what was observed in SmO2 (Fig 6). There was no 

significant difference in THb between the time points (p=0.094), but there was a 

significant main effect between the muscle groups (p=0.039). The THb of the BB was 

found to be greater than the ES (p=0.021) and tended to be higher than the VL as well 

(p=0.06). No difference was found in THb between the ES and the VL. As would be 

expected, there was a significant effect of sex (p=0.039), with men (12.648 g/dL) (Fig 7) 

having higher estimates of THb than women (11.932 g/dL) (Fig 8). A comparison of the 

two sexes is displayed in Figure 9. There was no time x muscle interaction (p=0.106), 

muscle x sex interaction (p=0.271), or time x muscle x sex interaction (p=0.093).  
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Figure 6. Minute averages (±SE) of total hemoglobin content of the vastus lateralis (VL), biceps brachii (BB), and 
erector spinae (ES) during four major time periods. 
 
     

Figure 7. Minute averages (±SE) of total hemoglobin content of the vastus lateralis (VL), biceps brachii (BB), and 

erector spinae (ES) of male subjects during four major time periods. 
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Figure 8. Minute averages (±SE) of total hemoglobin content of the vastus lateralis (VL), biceps brachii (BB), and 

erector spinae (ES) of female subjects during four major time periods. 

Figure 9. Minute averages (±SE) of total hemoglobin content of male and female subjects during four major time 

periods. 
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Discussion 

The purpose of this study was to assess the deoxygenation in exercising 

muscles based on their oxidative properties. Utilizing near infrared spectroscopy (NIRS) 

during rowing exercise, we were able to monitor oxygen saturation trends in the vastus 

lateralis (VL), biceps brachii (BB), and erector spinae (ES) muscles in healthy young 

men and women. It was hypothesized that 1) the degree of deoxygenation would be, 

from largest to smallest: BB, VL, then ES, and 2) the high intensity rowing interval will 

cause the greatest degree of deoxygenation in all three muscle groups. Seven subjects 

successfully completed the study. Based on the results, the hypotheses were only 

partially true. In contrast to our hypothesis, the BB did not experience the most 

deoxygenation; in all three exercise intervals, the VL had the fastest and most severe 

decline in oxygen saturation. This aligns with the data and conclusions from Zhang et 

al.’s (2010) study, which stated that, although it has a greater oxidative capacity than 

the BB, the VL has prominent deoxygenation and post-exercise reoxygenation trends 

when studied via NIRS. Consistent with our hypothesis, the ES did, however, 

experience the slowest and least severe deoxygenation. Prior studies have also found 

this trend of low deoxygenation in paraspinal muscles (Vrana et al., 2018).  

As for the second hypothesis, the high-intensity interval, where subjects were 

required to row within 60%-70% of their maximum wattage for two minutes, did not 

prove to be the most deoxygenating section of the exercise test for each muscle group. 

The VL exhibited its greatest deoxygenation during this interval, but the BB and ES 

showed no difference between the exercise intervals. Only from rest to exercise did the 

BB and ES show any significant difference in oxygenation. This contrasts studies that 
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have found that O2 kinetics directly correlates with exercise intensity (McKay et al., 

2009). However, this anomaly is most likely a cause of the low reliability of NIRS 

oximeters at high-intensity exercise (Crum et al., 2017; Tew et al., 2010) as well as the 

inexperience of rowing mechanics for the untrained subjects. Most studies, like Zhang 

et al. (2010), target elite competitive rowers as their subjects. Their high level of stroke 

repeatability allows for less erratic movements, thus leading to more direct physiological 

changes in the main muscle groups. Trained rowers are also more likely to retain the 

ideal drive to recovery ratio of 1:1, as outlined by Umar et al. (2019). Untrained rowers 

will likely spend more time in the drive than the recovery, causing quicker fatigue and 

inconsistent form (Shaharudin & Agrawal, 2015). With this previous literature in mind, 

the unreliable trends in deoxygenation found in this study are most likely due to a 

multitude of variables- inconsistent movements during the rowing stroke, a greater 

workload placed on the BB than what is normative, and a low drive to recovery ratio 

causing greater fatigue at high intensity, leading to low reliability in the MOXY device. 

Secher (1993) detailed how consistent training alters the rower’s form. With 

training, the stroke of the rower utilizes less upper body movement and focuses more 

on the drive of the legs. This trend was not particularly seen in the results of this study; 

anecdotally, it appeared that the subjects used their arms more than what is required, 

yet the data show a greater deoxygenation in the VL than the BB, representing 

increased activity in the legs rather than the arms at higher exercise intensities. It is this 

unreliable data caused by inconsistent form that leads many researchers to focus on a 

trained subject population instead of untrained when utilizing rowing exercise.  
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Zhang et al. (2010) stated that, because of its size and oxygen consumption, the 

VL is the ideal muscle to measure via NIRS. This is evident in the vast amount of 

physiology literature that monitors the VL during exercise. In this current investigation as 

well, the VL exhibited the most evident changes during exercise, as it was the only 

muscle observed that had significantly different oxygen saturation at rest, low-intensity, 

medium-intensity, and high-intensity exercise. Both the ES and BB muscles showed a 

decrease in oxygenation from rest to exercise, but there was no difference between the 

various intervals. Other muscle groups that are utilized in the rowing stroke, such as the 

rhomboids, hamstrings, and abdominal muscles should also be observed to achieve a 

more holistic view of the oxygen kinetics applied to indoor rowing.  

This study provided some insight into the changes in oxygenation in the erector 

spinae muscles during exercise. Compared to the vastus lateralis and the biceps 

brachii, the erector spinae muscle group is vastly lower in terms of investigative 

research. This is especially true in exercise studies. This study showed that, while 

lesser in degree than the other two muscle groups, the erector spinae muscles 

decrease in oxygen saturation during rowing, proving their function in the stroke. More 

research should be done on the paraspinal muscles to further understand their oxidative 

properties and responses to whole-body exercise. 

Although it was not a primary focus of this study, total hemoglobin (THb) 

estimates were also determined via NIRS. An increase in THb during exercise was 

expected (Novosadova, 1977) because the overall hematocrit in active skeletal muscle 

increases. However, no significant increase of THb was observed in any muscle at the 

four time points, though the BB had lower THb than the other muscle groups. This is 
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likely because the BB has a higher concentration of type II anaerobic muscle fibers in 

comparison to the VL and the ES (Nygaard et al.,1983). Therefore, the VL and the ES 

both have a greater oxidative blood supply, thus causing an increase in hematocrit and 

THb. The main finding regarding THb in this study was the difference in THb between 

the sexes. Despite a small sample size, the average THb of the four male subjects was 

significantly higher than the average THb of the three female subjects. This sex 

difference in THb is found in previous literature as well (Sugisaki, 2000). Theories on 

the reason behind the increased THb in males vary in literature. The most common and 

widely accepted theory refers to the increase in androgens in males. Murphy (2014) 

explains how the sex hormone, which is naturally higher in almost all mammalian males, 

causes an increase in erythropoiesis, otherwise known as red blood cell production. 

When red blood cell production increases, hematocrit also increases, thus leading to 

greater levels of THb in males.  

Unlike THb, no difference in SmO2 was found between sexes. Smith & Billaut 

(2012) found a similar conclusion when comparing deoxygenation and fatigue in men 

and women after sprint exercises. Although Beltrame et al. (2017) found higher oxygen 

consumption (VO2) in men than women during exercise, deoxygenation is simply a 

percentage of O2 saturation, correlating more with fitness level and exercise intensity 

than sex (Grassi & Quaresima, 2016). 

Limitations 

    The main limitation of this study was the small sample size. Due to the university 

closure, subject recruitment was fully terminated. Seven subjects completed the study 

before the university closure and thus created the sample pool for this study. This small 
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size resulted in relatively high measures of variability, which negatively impacted our 

statistical power and ability to detect differences. This investigation should be further 

carried out in a larger study to allow for a greater sample size and more reliable results. 

    Another limitation of this study, as outlined earlier, is the use of untrained rowers as 

subjects. Although a vast majority of users of rowing ergometers are untrained, very few 

rowing exercise studies utilize untrained subjects. Most research focuses on the 

physiological changes observed in elite competitive rowers. When comparing 

oxygenation results of the current investigation to the results of Zhang et al. (2010) and 

Chance et al. (1992), it is clear that trained rowers can provide more reliability. Even on 

an ergometer, the form of the stroke is highly reproducible for trained rowers. This 

allows for clearer results and more accurate changes between exercise intensities. 

Unlike untrained rowers, the trained rower’s stroke will not alter significantly from one 

intensity to the next. Muscle force is the only differing factor, leading to more direct 

physiological changes.  

    Another limitation of this study is the low reliability of current NIRS oximeters at high 

intensity exercise. This issue was outlined in Crum et al.’s (2017) study that found great 

validity and reliability in the MOXY device from rest to moderate exercise, but concluded 

that, due to increased movement and changes in O2 kinetics, the device becomes 

significantly less reliable at high intensity exercise. This was exemplified in our study as 

well; the largest standard errors for both THb and SmO2 of all three muscle groups 

occurred during the 60%-70% interval.  

Conclusion 
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    This study was the first to examine the oxygenation of multiple muscle groups during 

rowing exercise using portable NIRS technology. Although the hypotheses were not 

fully met, this investigation showed some promising data for further research.  As NIRS 

technology continues to become the paramount tool to measure muscle oxygenation 

during athletic activities, more research will have to be performed in modalities other 

than cycling, such as treadmill running and rowing, to determine normative values. 

While a few unforeseen limitations ultimately affected the significance of the results, 

highlighting changes in oxygenation in various muscles simultaneously allows us gain a 

deeper understanding of the effects of muscle fiber size and composition on athletic 

performance. This knowledge can subsequently lead to more targeted training 

programs with underlying muscle exercise physiology in mind. As NIRS technology 

improves in portability, cost, and reliability, future research should be performed to 

further quantify deoxygenation trends in various exercise modalities.  
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